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Instability waves in a laminar planar jet are extracted using hybrid unsteady-flow
simulation combining particle tracking velocimetry (PTV) and direct numerical
simulation (DNS). Unsteady velocity fields on a laser sheet in a water tunnel are
measured with time-resolved PTV; subsequently, PTV velocity fields are rectified in
a least squares sense so that the equation of continuity is satisfied, and they are
transplanted to a two-dimensional incompressible Navier–Stokes solver by setting a
multiple of the computational time step equal to the frame rate of the PTV system. As
a result, the unsteady hybrid velocity field approaches that of the measured one over
time, and we can simultaneously acquire the unsteady pressure field. The resultant set
of flow quantities satisfies the governing equations, and their resolution is comparable
to that of numerical simulation with the noise level much lower than the original
PTV data. From hybrid unsteady velocity fields, we extract eigenfunctions using
bi-orthogonal decomposition as a spatial problem for viscous instability. We also
investigate stability/convergence characteristics of the hybrid simulation referring to
linear stability analysis.

1. Introduction
Instability waves, particularly their linear behaviours, in a jet have been analysed in

many studies. For example, symmetric and asymmetric instability modes in a planar
jet were investigated by Sato (1960), where velocity fluctuations and mean-velocity
fields were measured at low Reynolds numbers to demonstrate the inviscid linear
theory (i.e. based on the Rayleigh equation). Later, a compressible planar jet was
theoretically studied using an analytic velocity profile by Blumen (1971), while for
viscous instabilities, the Orr–Sommerfeld equation was solved by Maslowe (1991) for
the Bickley jet (most of these analytic approaches were summarized by Drazin & Reid
1981). Furthermore, details of the Reynolds-number dependence were numerically
studied by Morris (1976) for a round jet, and the nonlinear characteristics in a
mixing layer were analysed by Huerre (1980). These organized disturbances, evolving
into large-scale vortices, were visualized in a laminar round jet by Mollendorf &
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Gebhart (1973). Similarly, large-scale vortical structures in a turbulent mixing layer
were observed by Brown & Roshko (1974).

Although it is almost certain that eigenfunctions from linear stability analysis
capture dynamics of small disturbances in a jet, extracting or quantifying instability
waves is non-trivial in experiments. For example, Arndt, Long & Glauser (1997)
performed proper orthogonal decomposition (POD) with multi-point pressure
measurement and showed that large-scale structures grow, saturate and decay in the
streamwise direction, which are qualitatively consistent with linear stability analysis.
Citriniti & George (2000) similarly conducted multi-point velocity measurement to
exhibit cross-sectional POD modes. These studies, however, have neither compared the
experimental results with eigenfunctions nor quantified their amplitude. For excited
jets, several studies have directly compared pressure or velocity fluctuations with
eigenfunctions in planar jets (Sato 1960) or round jets (Zaman & Hussain 1980;
Mankbadi 1985; Tam & Morris 1985) and reported good agreement. In unforced jets,
Suzuki & Colonius (2006) identified the instability-wave amplitude based on a least
squares approach using phased-array pressure data in the near field. Most of these
studies, however, have compared statistical data, in which instantaneous flow fields are
unrecoverable and instantaneous phase information is missing. Moreover, all these
studies have processed pointwise measurement data. Difficulty of post-processing
experimental data lies in the low spatial resolution and the high noise level, which
prohibit quantitative analysis using differentiated flow quantities.

On the other hand, several research groups have explored techniques that
reconstruct complete flow fields from sparse dataset in applications other than jet
flows. Karniadakis pioneered this field and proposed a technique that recovers velocity
fields from image measurement, such as particle image velocimetry (PIV), using POD
(Ma et al. 2003; Sirisup et al. 2004). While POD approaches combined with the
Galerkin projection are convenient to reconstruct representative motion, they require
a large set of modes to recover detailed non-stationary motion. Another candidate
may be the estimator for state-space control proposed by Bewley & Liu (1998),
yet the theories primarily represent dynamics of a linear system. Other researchers
have focused on integration of experimental data and computational fluid dynamics
(CFD). Nisugi, Hayase & Shirai (2004) and Yamagata, Hayase & Higuchi (2008)
introduced an unsteady-flow simulation technique incorporating with time-resolved
experimental data as a feedback system. Recently, our group developed a hybrid
unsteady-flow simulation technique combining particle tracking velocimetry (PTV)
and direct numerical simulation (DNS). This approach is able to reconstruct unsteady
flow fields from noisy image measurement and to clearly capture non-periodic vortical
structures at low Reynolds numbers (Suzuki, Ji & Yamamoto 2009a; Suzuki et al.
2009b).

The basic procedures of the hybrid simulation are as follows. To acquire unsteady
velocity fields from experiments, we conduct time-resolved PIV/PTV. In Suzuki et al.
(2009a, b), we measured unsteady flows past an airfoil on a laser sheet in a water
tunnel. By synchronizing the computational time step with the frame rate of the
measurement system, we feed the PIV/PTV velocity field into that of the two-
dimensional DNS. Here, the hybrid velocity field is given by a linear combination
between the PIV/PTV velocity field and that marched from a previous time step
with the DNS, and the weight between them is determined such that all growing
modes of the numerical system are suppressed (see figure 1 for a conceptual diagram).
As a result, the deviation of the hybrid velocity field from the experimental one is
diminished in the course of time. Thus, we can acquire not only unsteady velocity
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Figure 1. Conceptual diagram of the hybrid algorithm combining PTV and DNS.

fields but also pressure fields that are compatible with the governing equations from
time-resolved velocity measurement. The resolution of the hybrid velocity field is
comparable to that of numerical simulation at low Reynolds numbers so that flow
quantities are differentiable for quantitative analysis.

The objective of this research is to investigate the features of the hybrid unsteady-
flow simulation based on planar-jet flows referring to linear stability analysis and to
extract instability waves from velocity image measurement. We measure unsteady
velocity fields of a planar jet in the Reynolds-number range of Re = 500–4000
in a water tunnel with time-resolved PTV, similar to our previous airfoil study.
Two-dimensional hybrid simulations solving the motion on the laser sheet suppress
excessive high-frequency/wavenumber components of the PTV data but retain large-
scale vortical structures in the shear layers. The measurement noise level diminishes
with decreasing weight on the PTV velocity field relative to that updated with
the DNS at each hybrid time step. To identify amplitude of instability waves, we
extract eigenfunctions of the Orr–Sommerfeld equation by introducing ‘bi-orthogonal
decomposition’ (see Morse & Feshbach 1953 for the mathematical frame work), or
sometimes referred to as ‘normal-mode decomposition’ (Ahluwalia & Keller 1977).
Since Salwen & Grosch (1981) introduced this approach for a viscous boundary layer,
several studies have applied it, for example, to an incompressible boundary layer (Hill
1995; Tumin 2003), the Poiseuille flow (Tumin 1996), a compressible boundary layer
(Suzuki & Lele 2003a; Tumin 2007), and a compressible mixing layer (Suzuki & Lele
2003b; Barone & Lele 2005). These studies have demonstrated the applicability of bi-
orthogonal decomposition to theoretical or computational flows (Hill 1995 and Tumin
2003 have extensive lists of these studies); however, applying it to experimental data
is more challenging because it requires high-order derivatives, which readily amplify
measurement noise in practice.

Furthermore, we evaluate the necessary weight on the PTV velocity field in the
hybrid algorithm by analysing the growth rates of the Kelvin–Helmholtz instability
as well as the amplification rate of the entire numerical system. The results indicate
that the hybrid velocity field approaches the measured one if the weight on the PTV
data overcomes the maximum amplification rate of modes spatially developing when
the hybrid simulation starts with the initial DNS flow field. We also discuss the
Reynolds-number dependence as well as the effects of unresolvable-scale motions and
three-dimensional dynamics.
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Figure 2. (a) Coordinate system of the planar jet. (b) Example of eigenvalue distribution
for a temporal problem. Complex ω solved with the spectral method is mapped for α = 2 at
Re = 1000. Two unstable modes are denoted with ∗.

The rest of the paper is organized as follows. After the introduction, basic
characteristics of instability waves in a planar jet are reviewed and bi-orthogonal
decomposition is introduced based on linear stability analysis in § 2. Next,
experimental set-ups and flow conditions are described in § 3; subsequently, numerical
approaches including the algorithm and procedures of the hybrid simulation are
summarized in § 4. In § 5, notable features of the hybrid simulation including noise
suppression and the weight between the PTV and DNS velocity fields are discussed
over a range of Reynolds numbers, and the hybrid flow field is compared with a
previous experiment by Sato (1960). To demonstrate the capability of the hybrid
simulation, instability waves in the hybrid velocity fields are analysed using bi-
orthogonal decomposition in § 6, followed by the conclusion in § 7, in which important
findings and implications are summarized.

2. Instability waves and linear stability analysis
2.1. Orr–Sommerfeld equation

In this study, we analyse the viscous instability of an incompressible planar jet based
on the Orr–Sommerfeld equation. Assuming that the mean-velocity field is transversely
sheared and unsteady disturbances can be linearly expressed as ∼exp [−i (ωt − αx)],
where ω denotes the angular frequency and α the wavenumber in the streamwise
direction (see figure 2a for the coordinate system), the incompressible Navier–Stokes
equations in two dimensions can be simplified as the Orr–Sommerfeld equation:

Lψ(y) ≡ 1

Re

(
d2

dy2
− α2

)2

ψ(y)+i (ω − αU (y))

(
d2

dy2
− α2

)
ψ(y)+iαU ′′(y)ψ(y) = 0,

(2.1)
where ψ(y) denotes the transverse part of the stream function (namely
Re [ψ(y) exp (iαx)] comprises the complete stream function), L the Orr–Sommerfeld
operator and U (y) the streamwise mean-velocity profile. In the following stability
analysis, we impose the homogeneous boundary conditions,

ψ(y → ±∞) = ψ ′(y → ±∞) ≡ 0, (2.2)
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Figure 3. Temporal eigenfunctions, ψ(y), at St = 0.15 with a PTV mean-velocity profile at
x/h =5. (a) Symmetric mode. (b) Asymmetric mode. The real part, whose peak is normalized
to unity, is drawn by a solid line, and the imaginary part by a dashed one. The mean streamwise
velocity, U (y), is shown by a dotted line for reference.

assuming that the distances to the upper and lower walls of the tunnel are far enough
for simplicity (see figure 6 later for the geometry in the experiment).

As an example, the solutions for ω at Re = 1000 are plotted in figure 2(b). A
temporal problem is solved using a spectral method described in § 2.3. In this
study, U (y) is given by the time-averaged PTV velocity field, unless otherwise noted.
Although the spatial problem is more relevant to the current geometry, we analyse
the temporal growth rate in this section to estimate the weight between the PTV and
DNS velocity fields later for the hybrid algorithm. We discuss spatial instabilities in
§§ 2.2 and 6 for bi-orthogonal decomposition, yet many of their trends are common
to those for temporal instabilities.

For an incompressible planar jet with a typical top-hat velocity profile, there are
two unstable modes. The asymmetric mode generally has a higher growth rate than
that of the symmetric mode (refer to Sato 1960; Blumen 1971). Figure 3 depicts the
eigenfunctions, ψ(y), near the most unstable frequency (St = 0.15, where St ≡ f h/ujet ,
f being the frequency, h the nozzle exit height and ujet the jet velocity defined later).
Here, we refer the symmetry based on the streamwise velocity or pressure; hence, the
shapes of ψ(y) appear conversely.

Figure 4(a) shows the growth rates as a function of the Strouhal number at
Re = 1000. These modes peak near St ≈ 0.15 and decay beyond the neutral stable
frequency (i.e. the cross-over points at St � 0.3). Figure 4(b) plots the maximum
growth rates at several downstream stations. Both growth rates decrease as the velocity
profile spreads downstream; consequently, instability waves eventually saturate and
decay somewhere x/h > 10. The eigenfunction profiles, ψ(y), accordingly become
gentler downstream with decreasing peak Strouhal number. We should remember
that the growth rates in figure 4 are plotted assuming a parallel flow at each x; hence,
they are considered to be ‘local’ growth rates. In contrast, growth rates amplifying the
entire system with a given two-dimensional mean-velocity field are referred to ‘global’
growth rates, which cannot be obtained from this simple analysis (refer to Huerre &
Monkewitz 1990 and Theofilis 2003 for explanations about the local versus global
instability modes).
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Figure 4. Temporal growth rates of instability waves solved based on the Orr–Sommerfeld
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Figure 5. Adjoint eigenfunctions, ψ†(y), corresponding to figure 3 at St =0.15.
(a) Symmetric mode. (b) Asymmetric mode. Line patterns are the same as figure 3.

2.2. Adjoint equation and bi-orthogonal decomposition

Because the Orr–Sommerfeld equation is not self-adjoint, its adjoint equation must
be introduced to determine the amplitude of instability waves using bi-orthogonal
decomposition. Integrating (2.1) by parts with (2.2), the adjoint equation can be
derived as

L†ψ†(y) ≡ 1

Re

(
d2

dy2
− α2

)2

ψ†(y) + i (ω − αU (y))

(
d2

dy2
− α2

)
ψ†(y)

− i2αU ′(y)ψ†(y) = 0, (2.3)

where L† denotes the adjoint Orr–Sommerfeld operator, and the disturbances are
assumed to take the adjoint linear form; i.e. ∼exp [i (ωt − αx)]. This equation has
the same discrete solutions for ω and α as (2.1). Figure 5 draws the shapes of ψ†(y)
corresponding to figure 3. They depict sharper peaks near the inflection points in the
shear layers compared with the original eigenfunctions.
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Using (2.1) and (2.3) and assuming that the eigenfunctions as well as the mean
velocity vanish as y → ±∞, the following relation was derived by Salwen & Grosch
(1981): ∫ ∞

−∞
Ψ †LΨ + Ψ L†Ψ †dy =

∂

∂t
Jt +

∂

∂x
Jx, (2.4)

where

Jt

(
Ψ †, Ψ

)
≡

∫ ∞

−∞

[
∂Ψ †

∂y

∂Ψ

∂y
+

∂Ψ †

∂x

∂Ψ

∂x

]
dy, (2.5a)

Jx

(
Ψ †, Ψ

)
≡ 1

Re

∫ ∞

−∞

[
Ψ † ∂3Ψ

∂x3
− ∂Ψ †

∂x

∂2Ψ

∂x2
+

∂2Ψ †

∂x2

∂Ψ

∂x
− ∂3Ψ †

∂x3
Ψ

+ 2
∂2Ψ †

∂x∂y

∂Ψ

∂y
− 2

∂Ψ †

∂y

∂2Ψ

∂x∂y

]
dy −

∫ ∞

−∞

[
Ψ † ∂2Ψ

∂t∂x
+

∂2Ψ †

∂t∂x
Ψ

]
dy

+

∫ ∞

−∞

[
U

(
2
∂Ψ †

∂y

∂Ψ

∂y
+

∂2Ψ †

∂y2
Ψ − Ψ † ∂2Ψ

∂x2
+

∂Ψ †

∂x

∂Ψ

∂x
− ∂2Ψ †

∂x2
Ψ

)]
dy,

(2.5b)

and each discrete solution, referred to as an ‘eigenmode’ here, is expressed as
Ψm(t, x, y) ≡ ψ(y) exp [−i (ωt − αmx)] and its adjoint solution as Ψ †

n (t, x, y) ≡
ψ†(y) exp [i (ωt − αnx)] (the wavenumbers are labelled with the subscripts m and
n for a spatial problem discussed below); hence, the system is expressed using the
original derivatives as opposed to a periodic form with ω and α, as shown in (2.1)
and (2.3).

Because the eigenmodes for instability waves take discrete solutions, the integral,
(2.5a,b), acts as an inner product for a temporal and spatial problem, respectively,
in the bi-orthogonal system. In a spatial problem, i.e. with given ω, ∂Jt/∂t vanishes,
while the partial derivative of x acting on Jx yields i (αm − αn), which vanishes only
if two wavenumbers are identical. Conversely, Jx vanishes only if Ψ † corresponds to
the adjoint solution of Ψ . Therefore, we can determine the complex amplitude of
a specific eigenmode (denoted by Ψm) from an arbitrary disturbance by substituting∫

ûdy, where û being the streamwise velocity in the frequency domain, into Ψ and
by calculating

am =
Jx(Ψ

†
m, Ψ )

Jx(Ψ
†
m, Ψm)

(2.6)

at each axial station. We are also able to calculate the amplitude of a temporal
eigenfunction by similarly using Jt .

We apply bi-orthogonal decomposition to hybrid velocity fields in § 6. By assuming
the flow to be locally parallel, we compute complex amplitudes of both symmetric and
asymmetric instability waves as a function of x for a spatial problem. Because this
decomposition requires up to the second-order derivatives of the velocity component
in (2.5b), i.e. ∂3ψ/∂x3, it is challenging to apply this technique for experimental data,
which readily amplify measurement noise by spatial differentiation.

We could circumvent higher derivatives using an alternative approach, such as one
analysed by Tumin (2003) and Denissen & White (2009), where they have formulated
the viscous instability problem in terms of primitive variables including pressure
fluctuation. However, because complete flow quantities are usually unavailable in
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experiments, those studies have introduced decomposition based on partial flow
information together with regularization, resulting in pre-selection of eigenmodes
and optimization of additional parameters. By using hybrid velocity fields, we can
avoid such ambiguities associated with mode selection and regularization parameters.
Moreover, unsteady pressure fields are actually available in our approach, even if we
decompose fluctuations using primitive variables.

2.3. Spectral method for computation

To compute complex ω for a temporal problem or complex α for a spatial problem of
(2.1)–(2.3) with a given U (y), we use the Galerkin method, which was introduced by
Orszag (1971) for the viscous instability analysis. For a temporal problem, we recast
the Orr–Sommerfeld equation as[(

d2

dy2
− α2

)2

− iαReU

(
d2

dy2
− α2

)
+ iαReU ′′

]
ψ = −ω · iRe

(
d2

dy2
− α2

)
ψ, (2.7)

and express the equation above in the matrix form using a set of the orthogonal basis
functions for ψ . Namely,

ψ(y) ≡
N∑

n= 0

cnPn(y), (2.8)

where Pn denotes the nth basis function and cn its coefficient. We typically choose
Pn such that they satisfy the boundary conditions (2.2). Subsequently, we can solve
it as an eigenvalue problem, where the eigenvalue ω with the greatest imaginary
part signifies the most unstable mode and its eigenvector specifies the coefficients cn

producing the eigenfunction with the orthogonal bases.
On the other hand, the Orr–Sommerfeld equation cannot be recast in a linear form

of α for a spatial problem; hence, (2.1) is rewritten in a form analysed by Bridges &
Morris (1984) as follows:[(

d2

dy2
− α2

)2

+ iωRe
d2

dy2

]
ψ = α · iRe

[
U

(
d2

dy2
− α2

)
− U ′′ + αω

]
ψ. (2.9)

Accordingly, the eigenvalue problem with respect to α can be solved iteratively for a
given ω. The matrix equation corresponding to (2.9) can be symbolically expressed as

A(ω, αi)c = αi+1B(ω, αi)c, (2.10)

where c represents a vector form of the coefficients for the basis functions and the
superscript i denotes the iteration counter. Once we find the converged solution at
the most upstream station, this becomes the initial guess for the next station. We
perform iteration until the difference of the eigenvalue from the previous iteration
becomes

∣∣αi+1 − αi
∣∣ < 10−3. The adjoint equation (2.3) is also solvable with the same

procedures.
To solve these problems in an infinitely extended domain, we take the approach

analysed by Spalart, Moser & Rogers (1991), where the eigenfunctions are expanded
using the Jacobi polynomials of (α, β) = (1, 1). Their polynomial-series representation
can be defined in −1 � η � 1 as

P (1,1)
n (η) ≡

n∑
k =0

(
η − 1

2

)k (
η + 1

2

)n−k

. (2.11)
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The domain of η is mapped into the physical space, −∞ < y < ∞, using η ≡
tanh (y/y0), where y0 = 1.0 is selected in this study. Accordingly, the basis functions
vanish as y → ±∞. We take the grid for y from that of the hybrid simulation
(Ny = 300 in −10 � y � 10 for the baseline case), and use N = 64 polynomials to
expand eigenfunctions. Appendix A discusses further details of the spectral method
and its accuracy.

Although the computational approach above provides local growth rates of
instability waves, we wish to estimate the temporal growth rate of the entire flow field,
i.e. global instability waves, to deduce the weight between the PTV and DNS velocity
fields later for the hybrid algorithm. Moreover, global eigenfunctions representing
spatially developed instability waves in two dimensions are useful to compare with
the results of bi-orthogonal decomposition in § 6. To construct ‘surrogate’ global
eigenfunctions in two dimensions, we connect local eigenfunctions with α in the
streamwise direction assuming the spreading rate of the jet to be small. Namely, we
treat

Ψ(2)(x, y) ≡ ψ(x; y) exp

[
i

∫ x

0

α(x ′)x ′dx ′
]

(2.12)

as an approximate global eigenfunction, where ψ(x; y) denotes a sectional
eigenfunction solved with a local velocity profile at a streamwise station x. To
normalize ψ(x; y), we set |ψ(x; y)| to be unity at each station by following Herbert
(1997).

For a spatial problem in two dimensions, α is a complex function of x, and Ψ(2)(x, y)
is calculated for a given frequency. To solve a temporal problem, (2.12) is similarly
integrated with a constant real α, but imposing several additional assumptions.
These assumptions are justified in Appendix B together with the estimation of
temporal growth rates using surrogate eigenfunctions. To rigorously compute temporal
eigenfunctions in two dimensions, an approach developed by Theofilis (2000), for
example, can be adopted.

3. Experimental apparatuses and flow conditions
To create a planar-jet flow, we fabricated a two-dimensional nozzle of a w = 79

mm span-width with a 10 mm thick panel on both sides and of an h = 5 mm exit
height, which is taken as the length scale; hence, the aspect ratio yields about 16.
Refer to figure 6 for the nozzle geometry as well as the experimental set-up. The
half-angle of the nozzle contraction is 15◦, and no tripping device was used so that
the jet flow was expected to be initially laminar at the exit. The nozzle was installed
in a 100 mm × 100 mm cross-section of a water tunnel; thereby, the nozzle height
being 1/20 of the tunnel height, and the distance from the exit to the end of the test
section was 1160 mm. The contact surfaces between the tunnel wall and the nozzle
were sealed with rubber sheets of 0.5 mm thickness. Both nozzle and water tunnel are
made of transparent acrylic resin for optical access. Water that is once accumulated
in a tank first enters a honeycomb section, passes through the test section of the
tunnel, and recirculates via a water pump.

A 4 W continuous argon-ion laser (wavelength of 488 nm, Spectra-Physics 2017-
04SF) was used for a light source. A laser beam was spread using a half-cylindrical
lens to create a laser sheet inserted from the bottom. The laser-sheet plane was aligned
approximately at the mid-span of the test section (40 mm from the sidewall) in the
streamwise direction. To capture flow images, a CMOS high-speed video camera
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Figure 6. Experimental apparatuses including the planar-jet nozzle and the water tunnel as
well as the PTV system.

(Photoron, FASTCAM-MAX) was focused on this sheet from the spanwise direction.
The focus was confirmed by installing a scaling plate at the mid-span of the test section
before running tests. Approximately a 50 mm × 50 mm square region of the test
section immediately downstream of the nozzle exit was recorded by the camera with
the resolution of 1024 × 1024 pixels, except for the Re = 4000 case, where the domain
was halved in the transverse direction due to a higher frame rate, and the resolution
was accordingly changed to 1024 × 512 pixels. For each flow condition, more than
6000 frames were taken by setting the shutter speed to be equal to the frame rate of
the camera, but only sampling periods after the flow reaches a quasi-stationary state
are processed as explained later.

We seeded silicon dioxide tracer particles (MATSUMOTO Microsphere, F-793D) of
approximately 30 µm in the diameter into water and tuned their density so that more
than 10 000 particles can be identified at each frame. Particle velocity is determined
by tracking individual particles through four consecutive frames (Nishino, Kasagi &
Hirata 1989). At each frame, at least 7000 particles can be traced in 1024×1024 pixels
(and approximately half only for the Re = 4000 case because of the halved domain
mentioned above). A typical instantaneous flow field consisting of particle velocities
is shown in figure 7.

To assign the velocity components at the computational grids, six neighbouring PTV
velocity vectors are selected for each grid point, and the first-order interpolation is
applied to determine the velocity components based on the least squares method. The
results of the hybrid simulation are insensitive to the number of sampled neighbouring
particles and the order of the interpolation. Uncertainties associated with the velocity
rearrangement schemes were extensively evaluated in Suzuki et al. (2009a).

In this study, we tested four different Reynolds numbers from Re =500 to 4000,
defining it based on the nozzle height; namely Re ≡ ujeth/ν, where ujet ≡

∫
u(y)dy/h

and ν is the kinematic viscosity. Table 1 summarizes these flow conditions as well as
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Case Re ujet (mm s−1) Twater Frame rate 	tDNS 	tPTV N

A 500 (500) 96 22 ◦C 500 f.p.s. 7.68 × 10−3 3.84 × 10−2 5
B 1000 (930) 164 29 ◦C 1000 f.p.s. 6.06 × 10−3 3.27 × 10−2 5
C 2000 (2000) 384 22 ◦C 2000 f.p.s. 4.80/7.68 × 10−3 3.84 × 10−2 8/5
D 4000 (4000) 823 16 ◦C 4000 f.p.s. 5.28 × 10−3 4.23 × 10−2 8

Table 1. Experimental conditions. ujet denotes the jet velocity based on the flow rate, Twater the

water temperature and N ≡ 	tPTV /	tDNS , where 	tPTV ≡ ujet/(frame rate × h). Parentheses
in the second column indicate the Reynolds numbers actually measured from PTV. Dual
values for Re = 2000 correspond to different grids for the resolution study.
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Figure 7. Example of a particle-velocity field acquired with PTV (Re = 1000, 8068 particles).

the parameters for the measurement system. By monitoring a flowmeter, we tuned the
jet velocity to the designed value via a pump and confirmed its measured velocity with
the PTV later. The target Reynolds numbers are listed in table 1 on the left together
with the measured ones in the parentheses. The hybrid simulations are performed
actually at the measured Reynolds numbers.

Although the nozzle was carefully installed and sealed in the tunnel, a jet flow tended
to be attached to either upper or lower wall over a long operating period. Hence, the
images were recorded after several vortices were observed from an impulsive start but
before the jet began to bend. We then process the data only during the period while
the jet flow was quasi-stationary and straight.

4. Hybrid unsteady-flow simulation
The basic procedures of the hybrid simulation are the same as those developed in

our previous study. Details of the algorithm and the validation against experiments
have been discussed in Suzuki et al. (2009a) and Suzuki et al. (2009b), respectively.
In the following, the algorithm is summarized in § 4.1, followed by the backbone flow
solver, i.e. DNS, including numerical treatments specific to planar-jet flows in § 4.2.
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4.1. Algorithm of hybrid simulation

In this study, we process PTV velocity fields, yet general PIV velocity fields are equally
applicable to the hybrid algorithm. While PTV may provide higher resolution than
PIV under certain conditions, it specifies velocity vectors only at points where tracer
particles are identified. Therefore, the velocity components must be reassigned at the
designated node points of the simulation.

We represent such velocity components interpolated from PTV data as (U, V ) in
two dimensions. To feed them to the hybrid simulation, we must rectify them so
that they satisfy the governing equations. For incompressible flows, arbitrary velocity
fields can satisfy the momentum equation with the time-derivative term so long as
no constraint is imposed on the pressure field. Hence, the equation of continuity is
the only constraint for the rearranged velocity field. By expressing the rearranged
components as (u, v), we define the following least squares cost function:

J (u, v, λ) ≡
∫∫

D
(u − U )2 + (v − V )2 + λ

(
∂u

∂x
+

∂v

∂y

)
dxdy, (4.1)

where λ is a Lagrangian multiplier, which is a function of space, and D denotes the
domain where the PTV velocity field is available. We recast the velocity field so that
the cost function above is minimized. By setting ∂J/∂u = 0, ∂J/∂v = 0 and ∂J/∂λ= 0,
the rearranged velocity components can be calculated as follows:

u = U +
1

2

∂λ

∂x
, (4.2a)

v = V +
1

2

∂λ

∂y
, (4.2b)

where λ is given by

∂2λ

∂x2
+

∂2λ

∂y2
= −2

(
∂U

∂x
+

∂V

∂y

)
. (4.3)

Here, λ is assumed to be compact in D when (4.1) is integrated by parts. In reality,
because the domain in which the PTV velocity data are available is limited in space, a
so-called ‘patch function’ is introduced, as explained in the next section. The complete
analysis including the patch function was performed in Suzuki et al. (2009a). Thus,
the rearranged velocity field is calculated by solving the Poisson equation whose
source term is given by the divergence of the PTV velocity field.

Since PTV velocity fields projected only on a laser sheet are available, they are
forced to follow the equation of continuity in two dimensions. When three-dimensional
and three-component velocity fields were to be acquired, the ambiguity associated
with the projection can be removed. An implicit assumption here is that the noise
level of the measurement is much higher than the spanwise velocity component. In
addition, it should be remembered that the resolvable length scale in the DNS is
generally smaller than that of the PTV. The effects of the spanwise motion and the
resolution issues are discussed in §§ 5.2 and 5.3. It is also be noted that the correction
term of the vector field is solenoidal; hence, the vorticity field, which will be observed
throughout the paper, is unchanged by this rearrangement.

To supply the rearranged PTV velocity field into DNS, we start with the original
DNS and run it until initial vortices leave the domain in which PTV data are
available. Subsequently, we start feeding the PTV velocity field to that marched with
the DNS at every N time steps, where N being an integer, by synchronizing N times
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the computational time step, 	tDNS, with the frame rate of the PTV system, 	tPTV,
as illustrated in figure 1. To readily retain the divergence-free condition mentioned
above, we set the hybrid velocity field as the following linear combination:(

u

v

)Hybrid

= (1 − ε)

(
u

v

)DNS

+ ε

(
u

v

)PTV

, (4.4)

where the superscript ‘DNS ’ denotes the velocity components updated with the DNS
and ‘PTV ’ the rearranged PTV velocity components mentioned above. Here, the
weight function, ε (0 � ε � 1), is assumed to be a constant in time for the analysis
below, but will be multiplied by a function of space (i.e. a patch function) later. The
weight can also be optimized in time, and such a technique was introduced in Suzuki
et al. (2009b).

To analyse the convergence of the hybrid algorithm, we define the velocity vector
and its error vector of the hybrid simulation as

ũn ≡
(̃
u

ṽ

)
n

and en ≡
(
δu

δv

)
n

, (4.5)

respectively, where the subscript ‘n’ denotes the computational time-step counter.
Here, the tilde on the top represents the exact quantity, which PTV attempts to
measure, as opposed to that including the error in (4.4), and δ denotes the error
component of the specified quantity. Hence, we can recover the velocity vector in (4.4)
by un ≡ ũn + en and assume |en| 
 |un| in the following discussion.

Subsequently, we expand the operator of the DNS solver in a linear fashion
and denote the noise component associated with the PTV measurement as w. By
substituting (4.4) and (4.5) into the DNS operator, we can derive the following
recursive relation for en:

en+1 ≈ [(1 − ε) · exp(−iω	tPTV)]en + εwn+1, (4.6)

where the time step is denoted by 	tPTV and the temporal part of the error term
is expressed as ∼ exp(−iωt), ω being complex. Accordingly, assuming that w is
independent and identical with the mean zero at each time step, the expected
magnitude of the error vector can be estimated as

E[|en+1|2] �

[
|r̂ |2n

+ ε2 |r̂ |2n − 1

|r̂ |2 − 1

]
E[|w|2], (4.7)

where |r̂ | ≡ (1 − ε) · exp(Im[ω]	tPTV). An analogous recursive relation was derived
by Suzuki & Colonius (2003).

In principle, we select the time-marching scheme and the spatial differentiation such
that their combination is numerically stable for any wavenumbers in the computation.
Therefore, the original Navier–Stokes solver should satisfy exp(Im[ω]	tDNS) � 1 in a
uniform flow. However, when the given flow field physically excites linear instabilities,
the amplification rate, exp(Im[ω]	tPTV), can exceed unity during a finite period (it
is noted here that the term ‘amplification rate’ is used for any modes in the entire
system including physical and numerical ones, while the ‘growth rate’ is limited to
physical instability throughout this paper). Thus, it is necessary to determine ε such
that |r̂ | < 1 is satisfied and the noise component is suppressed in the course of time;
namely, the hybrid velocity field is converged to the velocity field attempted to be
measured with the PTV. At the same time, it is ensured that the simulated flow field
is governed by the PTV measurement, not by the DNS.
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Suppose we are able to estimate the maximum global amplification rates including
both computational and physical ones. We then wish to choose the weight on PTV as

ε > Im [ω]max 	tPTV, (4.8)

so that the condition |r̂ | < 1 is guaranteed for small 	t . It is indicated from
(4.8) that the contribution from the PTV data, which is only of the order of
O

(
Im [ω]max N	tDNS

)
, can still be reduced at each hybrid time step if the time step is

decreased. This helps suppress noise components and generate smooth velocity fields
so that flow quantities become differentiable. Namely, viscous dissipation overcomes
the noise level of random errors over time. We discuss the relation between the
weight on the PTV data and the growth rate of linear instability waves as well as the
amplification rate of the numerical system based on the actual simulation in § 5.2.

4.2. Navier–Stokes flow solver and the patch function

To march the hybrid velocity field, we solve the incompressible Navier–Stokes
equations in two dimensions with staggered grids using the fractional step method
(Kim & Moin 1985). The time-marching schemes consist of the third-order Adams–
Bashforth scheme for the convection terms and the Crank–Nicholson scheme for the
diffusion terms, as shown below:

û − un

	t
= −23∇ · (uu)n − 16∇ · (uu)n−1 + 5∇ · (uu)n−2

12
+

1

Re
∆

(
û + un

2

)
, (4.9)

un+1 − û
	t

= −∇φn+1 − σ0(x) (un+1 − uc) , (4.10)

where the subscript n denotes the time-step counter, the second term on the right-
hand side of (4.10) is the ‘sponge buffer’ term explained later and φ is given by the
following Poisson equation:

	φn+1 =
1

	t
∇ · û . (4.11)

For spatial derivatives, we use a four-stencil central-differencing scheme proposed
by Kampanis & Ekaterinaris (2006) with lower-order schemes for the boundary
points.

To efficiently solve jet flows, rectangular grids are clustered near the nozzle exit
and stretched by constant rates in both x and y directions (see figure 8 for the
computational domain and the coordinate system). The entire computational domain
is set to be [0, 30h] × [−10h, 10h] for the baseline cases, and a flow field as large as
[0, 10h] × [−3h, 3h] is analysed in this study. Here, the grid resolution, the boundary
conditions and other parameters are first determined such that unsteady simulations
can be stably performed with the original Navier–Stokes solver, i.e. ε = 0 in (4.4),
except for the Re =4000 case. At Re =4000, the resolution is assured only based
on the hybrid simulation. Details of the grid-dependence study are summarized in
Appendix C together with the test for the exit-boundary condition. Importantly, the
hybrid simulation is found to be rather insensitive to the grid resolution because the
hybrid velocity field is continuously forced by the PTV data. Thus, the results solved
with the 450 × 300 mesh are analysed in the following discussion.

A jet is ejected by imposing a top-hat velocity profile with hyperbolic-tangent
functions at the boundary points on x = 0, as indicated in figure 8. Non-slip boundary
conditions are imposed on the top and bottom walls as well as x =0 except the
nozzle exit. At the downstream boundary points, the convective boundary condition
is imposed, where the convective velocity uc is given by the averaged streamwise
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Figure 8. Computation mesh for the hybrid simulation (450×300, every five grid points) and
contour of the patch function in a grey scale (interval of 	f =0.1). Strength of the sponge
term, σ0 in (4.10), is drawn at the bottom, and the inlet-velocity profile is depicted on the left.

velocity along the exit line. To further suppress undesirable disturbances from the
downstream boundary, a feedback term, the so-called ‘sponge buffer zone’, is added
as shown in (4.10) so that the flow is forced to relax towards the uniform flow in
x/h � 25. The strength of the sponge term is drawn in figure 8. The influence of the
domain size and the boundary conditions is assured by running the DNS for the same
condition (Re = 2000) in a longer domain, [0, 45h] × [−10h, 10h], and the results are
also listed in table 3 of Appendix C.

To actually feed the hybrid velocity field to the DNS, the intermediate velocity,
û in (4.11), is replaced by the linear combination given by (4.4). Accordingly, the
rearrangement processes, (4.2) and (4.3), which are required for the PTV velocity
field, are treated by the original Poisson equation so that an extra iteration process
can be minimized. Here, since the domain in which PTV velocities are available is
restricted by the size of the camera window, a so-called ‘patch function’, f (x, y), is
defined such that it takes unity in the middle of the camera window and gradually
vanishes outside (see figure 8 for its contour). This function is multiplied by the PTV
velocity field; therefore, the actual hybrid velocity field corresponding to (4.4) can be
rewritten by (

u

v

)Hybrid

= [1 − εf (x, y)]

(
u

v

)DNS

+ εf (x, y)

(
u

v

)PTV

. (4.12)

When the PTV velocity field is overlaid with the patch function, its effect on the
equation of continuity along the patch boundary can also be treated by solving
the Poisson equation. Analysis of the convergence including the effect of the patch
function was performed in Suzuki et al. (2009a). It should be noted that to calculate
a pressure field, the Poisson equation (4.11) should be solved before superposing the
PTV velocity component.
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Figure 9. Comparison of vorticity contours at Re = 1000. (a) Hybrid simulation, ε =
0.08	tPTV . (b) ε = 0.2	tPTV . (c) ε = 0.5	tPTV . (d ) ε =1.25	tPTV . (e) PTV (10 frames are
averaged). (f ) Superposition of 10 consecutive images. Contour level: −5 � ω � 5 with
an interval of 	ω =0.8 for all contours, and counter-clockwise vorticity is drawn by lighter
colours and clockwise one by darker colours. Time generation of all figures is the same as
figure 7 (at t =90.8, which is sufficient for the hybrid simulations to converge, as demonstrated
in figures 10 and 13).

5. Features of hybrid simulation and comparison with experiments
5.1. Basic features of the hybrid simulation

To study the features of the hybrid simulation, we first observe velocity fields solved
with the hybrid simulation and compare them with the PTV velocity field. Figure 9
exhibits typical vorticity contours of the hybrid simulation at Re = 1000 among
different weights, ε in (4.12), and that directly computed from PTV at the same
time generation. We also display superposition of ten consecutive frames from the
high-speed camera to indicate particle trajectories for reference.

The hybrid vorticity fields in figure 9 show that the Kelvin–Helmholtz instability
causes to generate nearly symmetric vortical structures in the shear layers. For a small
weight on the PTV velocity field (ε = 0.08	tPTV ), the noise level is low, but small
vortical structures seem to be unresolved. With increasing ε, the noise level is also
increased, while distinctive vortex arrays are reconstructed. For the greatest weight
(ε = 1.25	tPTV ), vortical structures can still be captured with a discernible noise level;
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Figure 10. Time histories of the streamwise velocity at (x/h, y/h) = (8, 0) for Re = 1000.
Vertical arrow at t = 60.6 denotes the time at which the hybrid simulation is activated.
(a) Comparison of different ε. Line patterns: · · · · · , ε = 0.08	tPTV ; − − −, ε = 0.2	tPTV ;
− · − · −, ε = 0.5	tPTV ; ——, ε = 1.25	tPTV . Grey solid line denotes the DNS.
(b) Comparison of different activation time. The dashed line denotes the case identical to
(a) on the left (ε =0.2	tPTV). The solid line denotes the one activated later (t = 126.0) and
shifted accordingly. The light grey line shows a time history directly computed from the PTV
for reference.

in contrast, the vorticity field averaged over ten PTV frames barely exhibits vortical
structures due to high-wavenumber noise although we can observe the correspondence
between the PTV and hybrid vorticity fields.

Figure 10(a) compares the time histories of the streamwise velocity at
(x/h, y/h) = (8, 0) among different ε used in figure 9. For the first two highest
weights (i.e. ε =1.25	tPTV and 0.5	tPTV), the time histories almost overlap rapidly
although the one for the highest ε includes some high-frequency fluctuations. The
next smaller case, ε =0.2	tPTV, slowly approaches the former two time histories,
but does not overlap with them. The lowest case, ε = 0.08	tPTV, follows neither any
other hybrid time histories nor that of the original DNS.

Because the hybrid velocity field approaches the measured velocity field with
sufficiently large ε, the result at later time should be independent of the initial
condition. We run an additional case with ε = 0.2	tPTV by activating the hybrid
simulation at t = 126.0 (at the end of the DNS time history in figure 10a). To compare
this time history with the corresponding previous one, which is activated at t =60.6,
we accordingly shift the one that is activated later in figure 10(b) and also draw a
time history directly computed from the PTV velocity field. These two hybrid time
histories almost overlap about after two cycles of fluctuations; in fact, the standard
deviation between them after t = 80 is only 0.006ujet . They also follow the PTV time
history, which yet includes significant high-frequency noise. With sufficiently large ε,
the hybrid velocity field appears to almost converge regardless of the initial velocity
field. At the same time, it substantially reduces high-frequency noise in the PTV data.

In fact, we can clearly observe suppression of the high-frequency/wavenumber
components in figure 11, which compares the frequency/wavenumber spectra of the
streamwise velocity among the DNS, the hybrid simulation and the PTV. Figure 11(a)
shows that the spectra of the PTV and the hybrid simulation agree well at low
frequencies (St � 0.3). The local maximum (St ≈ 0.2) roughly agrees with the most
unstable frequency of the symmetric mode calculated from spatial linear stability
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Figure 11. Comparison of the streamwise-velocity spectra among the DNS, the hybrid
simulation (ε = 0.2	tPTV) and the PTV at Re = 1000. (a) Frequency spectra. The time
histories of u(8, 0) in figure 10 are Fourier transformed. The time histories after t = 78.9 are
segmented into three blocks, and the spectra are averaged using five samples with 50 % overlap.
(b) Wavenumber spectra. The streamwise-velocity profiles along y/h =0.5 in 1 � x/h � 9 are
Fouier transformed, and 40 snapshots are averaged for each case.

analysis (St ≈ 0.165 at x/h= 5). With increasing frequency, the spectrum of the
hybrid simulation then decays faster than that of the PTV and closely follows the
DNS spectrum at St > 0.5. In contrast, the high-frequency components of the PTV
spectrum hardly decay with frequency, and this is consistent with the high-frequency
fluctuations observed in figure 10(b).

Similarly, the comparison of the wavenumber spectra in the shear layer in
figure 11(b) shows that the hybrid simulation agrees with the PTV result only at
low wavenumbers (e.g. the most unstable wavenumber of the symmetric mode is
kxh ≈ 1.8 at x/h= 5 based on spatial linear stability analysis) and suppresses the
high-wavenumber components relevant to the PTV velocity fields. Although the
hybrid spectrum appears to decay with the wavenumber even faster than the DNS
spectrum, the magnitude of the DNS streamwise velocity along y/h = 0.5 is somewhat
greater than that of the PTV/hybrid simulation due to different shear-layer spreading
rates. Thus, the results of the frequency/wavenumber spectra explain that the hybrid
simulation can extract vortical structures in the shear layers by retaining resolvable-
scale motion but with a lower noise level.

5.2. Estimation of the necessary weight on the PTV velocity field

Figure 9 has demonstrated that we can tune the signal to noise ratio by adjusting
the weight on the PTV velocity field. As formulated in (4.8), the hybrid velocity
field approaches that measured with the PTV over time as long as ε dominates over
Im[ω]	tPTV. If we attempt to estimate the maximum global amplification rates using
two-dimensional surrogate eigenfunctions computed in § 2.2, they yield, for example,
Im[ω]max ≈ 0.31 and 0.34 for the symmetric and asymmetric modes, respectively, at
Re =1000 (refer to Appendix B for the procedures). These amplification rates are
yet somewhat higher than the threshold value deduced from figure 10(a), which is
ε ≈ 0.2	tPTV.

To further explore the necessary condition for ε, we next impose the mode excited
when the hybrid scheme has started. Taking a Fourier transform of the DNS
velocity fields near the peak frequency, approximately St ≈ 0.13 at Re = 1000, before
the hybrid simulation is activated, we can extract dominant periodic fluctuations.
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Figure 12. Vorticity contour of the disturbances extracted from the DNS (Re = 1000 and
St ≈ 0.13). Vorticity component is Fourier transformed during four periods of the target
frequency, and the time-averaged vorticity is overlaid. Contour levels: −5.0 � ω � 5.0 with an
interval of ∆ω =0.4, and the colour patterns are the same as figure 9.

Figure 12 depicts a streamwise-velocity contour of the extracted mode, which spatially
grows in the domain of interest. Reducing its magnitude to the linear range (|u′|max ≈
0.01ujet ), this mode is imposed as an initial condition superposed on the mean-velocity
field, and the flow field is marched with the DNS (similar to the approach taken in
Appendix B). Consequently, the amplification rate is estimated to be Im[ω]max ≈ 0.16,
which is consistent with the threshold weight deduced from figure 10(a).

The results of the estimated amplification rate of the entire system and the necessary
condition for the PTV weight may be explained from the relation between the temporal
and spatial growth rates. Referring to Gaster (1962), the temporal growth rate of
instability waves can be converted to the spatial one. If this is applied to the current
case, the temporal growth rate obtained in Appendix B is considered to be the
maximum value, and it is decreased as the eigenfunction is spatially developed. The
extreme case is the spatial eigenfunction, whose temporal growth rate vanishes. When
we activate the hybrid scheme, spatially-developed disturbances dominate velocity
fluctuations, and their temporal growth rate should be smaller than the maximum
value given by the temporal eigenfunctions. As a result, the mode primarily excited
at the time of activation governs the necessary weight on the PTV velocity field.
Ideally, a spatial eigenfunction should not grow in time, but the extracted mode can
initially grow because we have reduced its magnitude. In fact, even if we impose the
mean flow without such a disturbance, the amplification rate changes only slightly.
Although the mode extracted using a Fourier transform may not exactly measure the
amplification rate of the actually excited mode, it is probably safe to assume that
such an initial condition approximately derives the temporal amplification rate of the
numerical system at the time of hybrid activation.

On the other hand, we can also evaluate the minimum weight on the PTV data
from the hybrid simulations. In figure 13, we plot the time histories of

J(t) ≡
∑

All grid points

f 2(x, y)[(uHybrid(t, x, y) − uPTV (t, x, y))2

+ (vHybrid (t, x, y) − vPTV (t, x, y))2] (5.1)
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Figure 13. Time histories of the discrete cost function given by (5.1). Line patterns are the
same as those in figure 10(a). The decay rates estimated from (4.7) with Im[ω] = 0.1 are also
plotted using straight lines for all cases.

for various ε. This corresponds to the cost function (4.1) inside the patch in a
discrete sense. For reference, we also draw the slopes of the estimated decay rates
by setting Im[ω]max = 0.1 (which is found to be a reasonable fit) in (4.7). The time
response becomes faster with increasing ε; in particular, the three cases, ε = 1.25	tPTV,
0.5	tPTV and 0.2	tPTV, seem to reach similar stationary states within the sampling
period. These trends are consistent with the time histories of streamwise velocity in
figure 10(a). On the other hand, the hybrid simulation with ε = 0.08	tPTV represents
neither two-dimensional simulation nor experimental flow field due to an insufficient
weight on the PTV data. In fact, if the global amplification rate is greater than
Im[ω]max = 0.1, (4.7) indicates that it does not converge, as shown by one straight line
increasing in figure 13.

The amplification rate crudely estimated from figure 13, Im[ω] = 0.1, is somewhat
smaller than that extracted from the DNS, which is Im[ω] ≈ 0.16. The difference may
be due to several assumptions used to derive (4.7). Nonetheless, the aforementioned
estimate from the DNS seems to be sufficient in a sense that the hybrid velocity field
approaches the measured one; namely the estimate is, at least, on the safer side. In
fact, the weight ε, which is twice the amplification rate, i.e. r = exp

(
−2Im[ω]	tPTV

)
,

theoretically minimizes the error given by (4.7) as n → ∞ for Im[ω] > 0.
For general Navier–Stokes solvers, high-wavenumber disturbances satisfy

exp (Im[ω]	t) < 1. This helps suppress the noise components associated with the
measurement errors, w, which are amplified with differentiation. On the other
hand, physical instability modes with low wavenumbers grow in general Navier–
Stokes solvers; however, even these physical instabilities are not self-driven under
a sufficiently large weight on the PTV data in the hybrid simulation. For example,
the two-dimensional Kelvin–Helmholtz instability predicted by the original Navier–
Stokes solver should decay in the hybrid simulation. But instead, flow instabilities
excited in the experiments are reconstructed in the hybrid simulation, as the error
parts are diminished in the course of time. Hence, strong organized structures that are
typically excited in two-dimensional simulations tend to be suppressed in the hybrid
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Figure 14. Comparison of vorticity contours at different Reynolds numbers (ε = 0.2	tPTV).
(a) Re = 500. (b) Re =1000. (c) Re = 2000. (d ) Re = 4000. Contour level: −5 � ω � 5 with
an interval of 	ω = 0.4 for all contours, and counter-clockwise vorticity is drawn by lighter
colours and clockwise one by darker colours.

simulation, and the flow field appears to be rather governed by three-dimensional
fluid dynamics (see Suzuki et al. 2009a for detailed discussion).

5.3. Reynolds-number dependence and the necessary weight

We now discuss the effects of the Reynolds number on the hybrid simulation. Figure 14
displays typical vorticity contours calculated with the hybrid simulation at different
Reynolds numbers. Here, we set the weight to be ε = 0.2	tPTV for all cases. As the
Reynolds number increases, the vorticity becomes stronger and intensive braid regions
appear more upstream. Moreover, laminar vortical structures start collapsing and the
measurement noise level increases at higher Reynolds numbers.

Such changes can increase the necessary weight on the PTV velocity field, ε, in the
hybrid algorithm at least in two ways. One is due to three-dimensional motions, which
may be relevant in the braid region (Williamson 1996) and the vortex core (Rogers &
Moser 1992). Deviation of motion from the continuity in two dimensions causes the
cost function to increase constantly, as discussed in Suzuki et al. (2009a). The other
is the limitation of the PTV resolution. Once the scales of eddies become smaller
than the resolvable scale of the PTV, they amplify measurement errors, and the DNS
solver cannot resolve such motion well even if the physical scale is still resolvable
with the original DNS. This also elevates the cost function, possibly resulting in a
larger necessary weight on the PTV velocity field.

Table 2 lists the estimated amplification rates of the entire numerical system at the
different Reynolds numbers. We estimate them by imposing the extracted mode in
the DNS and also by fitting slopes with the time histories of the cost functions, as
explained in figures 12 and 13, respectively; hence, the values, particularly the latter
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Case Re N (≡ 	tPTV /	tDNS ) Im[ω]DNS
max Im[ω]Hybrid

max

A 500 5 0.06 0.1
B 1000 5 0.16 0.1
C 2000 5 0.24 0.15
D 4000 8 (0.26) 0.2

Table 2. Comparison of the amplification rates for the entire system at different Reynolds
numbers. The fourth column denotes the values estimated by imposing the mode excited in the
DNS (cf. figure 12), and the fifth column those estimated from the slopes of the cost functions
(cf. figure 13). The excited mode in the DNS at Re =4000 is extracted beyond the time of
hybrid activation; accordingly, the estimate is uncertain.

ones include large uncertainties. Although the estimate from the slopes of the cost
function tends to be lower than the estimate using the DNS, their magnitudes are
similar. More importantly, both results suggest that the necessary weight becomes
greater with increasing Reynolds number. In general, linear stability analysis derives
that the growth rate depends less on the Reynolds number at Re � 1000, namely in
the inviscid limit. However, table 2 indicates that the necessary weight can increase
as much as 50 % from Re = 1000 to 2000, and our previous study on flows past an
airfoil (Suzuki et al. 2009b) also implied a rapid increase of Im[ω]max with Re. As
discussed in § 5.2, the disturbances at the time of hybrid activation are rather close to
spatially developed instability waves, whose growth rate is smaller than the maximum
growth rate of temporal eigenfunctions. In addition, three-dimensional motions and
measurement noise due to smaller eddies can contribute to greater amplification rates,
as discussed above. Hence, it is understandable that the necessary weight increases
with the Reynolds number.

5.4. Comparison with an experiment

There were relatively few experimental studies of planar jets in the Reynolds-number
range of our interest in the past (Sato 1960; Sfeir 1979). Sato (1960) reported both
mean-flow and fluctuating quantities in detail at Re ≈ 4000. Referring to his results,
we observe statistical flow properties of planar jets solved with the hybrid simulation
in this section. In our experiment, the memory of the high-speed camera restricted the
sampling period of the image measurement, and we start processing flow images soon
after the jet becomes stationary but before the jet starts bending towards the wall.
Therefore, the results of the hybrid simulation are statistically limited. However, by
comparing them with an independent experiment, we demonstrate that the samples
taken in this study retain fundamental characteristics of an unstable planar jet and
support the generality of the current analysis about instability waves.

In the following, we refer to a case in Sato (1960) where an air jet was issued with
the centreline exit velocity of uC.L. = 10.0 m s−1. In his experiment, a rectangular exit
of h =6 mm height times w = 400 mm spanwidth is followed by a straight-channel
part of l =1100 mm length. In contrast, in our experiment, the section-averaged
velocity is defined as ujet , and the jet was ejected immediately from a converging
nozzle. Therefore, the shear-layer thickness and the section-averaged flow rate may
be different in a non-dimensional sense between the two experiments. For calibration
of the transverse length scale, the streamwise-velocity profile in Sato (1960) at x =30
mm is integrated to estimate the flow rate, and the exit height is redefined as
h ≡

∫
ū(y)dy/uC.L. in the following comparison.
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x/h =10.0.

We first observe mean-flow properties. Setting ε = 0.5	tPTV, we ensure that the
PTV velocity field governs the hybrid simulation at Re = 4000. Figure 15(a) compares
streamwise-velocity profiles at several downstream stations. The velocity gradients
near the nozzle exit of Sato’s experiment (Sato 1960) are gentler than those in the
hybrid simulation, probably because the shear layers are thicker owing to boundary-
layer development along the long channel. In fact, he reported that the velocity
profile for this case was close to a parabolic shape. Nonetheless, the diffusive rates
just outside the shear layers appear to be similar between the two results, and the
centreline velocities agree reasonably well.

Likewise, figure 15(b) plots transverse-velocity profiles. Because of the limited
sampling period in the hybrid simulation, the offset of the centreline (i.e. asymmetry)
is discernible. The gradients outside the shear layers between the two results are
relatively close at x/h= 5.0 and 6.67, indicating that the hybrid simulation captures
suction flow. But, the gradients near the centreline in the hybrid simulation are
lower than that of Sato’s profiles (Sato 1960). As shown in figure 15(a), the
streamwise-velocity profile of the hybrid simulation is similar to a top-hat shape,
while Sato’s profile is closer to a parabola. This can change the spreading rate of
the jet in the potential core, leading to different transverse-velocity gradients near the
centreline.

Next, we analyse streamwise-velocity fluctuations. Figure 16(a) shows that the
sectional profiles depict similar double-hump shapes for both results, but the
corresponding downstream sections differ significantly. In fact, the comparison of
the centreline profiles in figure 16(b) reveals that the initial disturbance level is about
one order of magnitude higher in the hybrid simulation; subsequently, both profiles
exponentially grow with similar growth rates. The fluctuations in the hybrid simulation
saturate before x/D = 10, while those of Sato’s experiments monotonically grow up
to x/D ≈ 12. In his experiment, the nozzle exit was followed by a long channel
and initial disturbances were carefully minimized. In contrast, a straight convergent
nozzle is used for the current study to emphasize vortical structures; therefore, it is
understandable that vortical structures are developed more upstream in our study.
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We notice in figure 16(b) that the hybrid profile with the higher PTV weight (i.e.
ε = 0.5	tPTV) depicts a hump up to x/h � 3 relative to the one with ε = 0.2	tPTV,
and the rest of the growing part up to x/h � 10 agrees better each other. This hump
corresponds to measurement noise of the PTV. Figure 17 compares instantaneous
vorticity contours between the two weights at the same time generation. The one with
the higher weight (ε = 0.5	tPTV) includes significant high-wavenumber noise in the
potential core. From these results, we can deduce that when the magnitude of initial
instability waves is comparable to or lower than the measurement noise level, it is
difficult to suppress the later, particularly at higher Reynolds numbers, in which the
viscous-dissipation effect is limited. Once organized structures are developed, their
disturbance level relative to the measurement noise is increased, and flow structures
can be clearly captured.

6. Analysis of Kelvin–Helmholtz instability waves
We finally analyse instability waves using bi-orthogonal decomposition. We select

the case at Re =1000 with the weight of ε = 0.2	tPTV, where the noise level is low, but
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convergence of hybrid velocity fields has been confirmed in §§ 5.1 and 5.2. Moreover,
large-scale vortical structures are formed downstream.

Since the Kelvin–Helmholtz instability waves are expressed as eigenfunctions in the
frequency domain, hybrid velocity fields, (u, v), are Fourier-transformed in time at a
designated frequency with the Hann window, and they are denoted by (û, v̂) after
normalization. By substituting

∫
ûdy into Ψ in (2.6), the coefficients of both symmetric

and asymmetric modes can be calculated at each station. Here, the streamwise-velocity
profile for the Orr–Sommerfeld operators, U (y), is calculated by averaging it only
during the sampling period of the Fourier transform.

Calculation of bi-orthogonal decomposition can be verified using the orthogonality
between the symmetric and asymmetric eigenfunctions, but there is no rigorous way
to prove that the calculated coefficient exactly extracts the amplitude of instability
waves for a full unsteady flow field. Yet, we refer to three quantities for indicators
below. The first is a coefficient calculated with the least squares minimization between
an eigenfunction and a stream function in the frequency domain. Such a coefficient
is given by

bm ≡
∑Ny+1

1 ψ∗
mψ∑Ny+1

1 ψ∗
mψm

, (6.1)

where again ψ ≡
∫

ûdy, and the summation is taken over all the grid points in the
transverse direction (the approach is analogous to the one taken by Suzuki & Colonius
2006). The second is Fourier-transformed velocity components along the centreline,
as û(y = 0) is relevant to the symmetric mode and v̂(y = 0) to the asymmetric one.
The last is a surrogate eigenfunction given by (2.12) for a spatial problem; namely
complex wavenumbers of eigenfunctions are integrated in the streamwise direction.

We start with a simple case to demonstrate the feasibility of the approaches
explained above. From figure 11(a), we select the centre of the peak frequency
(St = 0.206) and take a Fourier transform of the hybrid velocity field for a long
period (10 periods of the peak frequency centred at t =90.8 in figure 10). Figure 18
depicts the amplitude profiles of eigenfunctions extracted from such a Fourier-
transformed velocity field, one being calculated with bi-orthogonal decomposition
(2.6) and the other with the least squares minimization (6.1). For reference, the
surrogate eigenfunctions and the centreline velocities in the frequency domain are
also plotted. We do not expect that (2.6) and (6.1) coincide with each other because
actual unsteady velocity fields include modes other than discrete solutions in linear
stability analysis. Nonetheless, they reasonably agree in the region in which the
disturbances grow exponentially. When they start saturating or locally dent, the
profiles of bi-orthogonal decomposition drop more sensitively than those of the least
squares minimization.

Figure 18 also indicates that the growth rate of the extracted symmetric
eigenfunction follows the prediction by linear stability analysis (i.e. symmetric
surrogate eigenfunction) downstream. For the asymmetric mode, the extracted growth
rate is somewhat lower than the prediction. The linear stability analysis actually
estimates a higher spatial growth rate for the asymmetric mode than the symmetric
one. However, probably because the sampling period was shortly after the impulsive
start of the jet, the symmetric mode was still dominant. In order to obtain good
agreement in the streamwise evolution between experimental data and surrogate
eigenfunctions, we may need to sample the data for a much longer period. In the
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following discussion, we remove the profiles of surrogate eigenfunctions, which are
relevant only in a statistical sense.

We then compare the sectional eigenfunctions with the stream functions from the
hybrid simulation in the frequency domain at two streamwise locations in figure 19.
Here, we determine the complex amplitudes of the eigenfunctions based on bi-
orthogonal decomposition. At both locations, they agree fairly well in magnitude and
phase although the flow may become nonlinear downstream (e.g. the magnitude of

velocity fluctuations is
√

u′2 + v′2 ≈ 0.11ujet at x/h = 7.5).
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Figure 20. Vorticity fields of the Fourier-transformed velocity during ten periods at St =0.206
(Re =1000). (a) Reconstructed contour with bi-orthogonal decomposition. (b) Contour directly
obtained from Fourier transform of the hybrid velocity field. The real part of the vorticity
field is superposed on the mean vorticity field for both contours. Contour levels and colour
patterns are the same as figure 14.

Figure 20(a) draws a vorticity field reconstructed using these amplitudes and
eigenfunctions in bi-orthogonal decomposition, and figure 20(b) also displays the
original vorticity field at the corresponding frequency. The reconstructed vorticity
field captures both magnitude and phase over the entire extent shown in the figure.
Beyond x/h= 8, where the velocity profile significantly diffuses, it is difficult to identify
the most unstable physical mode in a spatial problem using the spectral method. But,
these results demonstrate that bi-orthogonal decomposition is applicable to hybrid
velocity fields at the peak frequency by taking a Fourier transform for a long sampling
period.

To further emphasize the benefit of low measurement noise in the hybrid velocity
fields, we reduce the period of Fourier transform so that we can readily tag the
phase of vortical structures in the time domain. Taking two periods of the target
frequency, St = 0.206, centred at t = 109.0 in figure 10, figure 21 similarly plots the
amplitude profiles of eigenfunctions together with Fourier-transformed velocities at
the centreline. In both symmetric and asymmetric components, amplitudes calculated
by the two approaches show decent agreement over the entire extent. Moreover, the
sectional eigenfunctions represent the stream functions quite well at the two stations
in figure 22.

Applying the same approach at the subharmonic frequency (St = 0.103), we
similarly plot the streamwise amplitude profiles and the sectional eigenfunctions in
figures 23 and 24, respectively. The streamwise-velocity component once decreases in
4 � x/h � 6 in figure 23(a); accordingly, the profile of bi-orthogonal decomposition
sharply drops, yet its phase seems to deviate from the other profiles. In contrast, the
asymmetric components almost exponentially grow all together and depict relatively
smooth profiles during this sampling period. The agreement between the eigenfunction
and the stream function at x/h= 5 is actually poor, while that at x/h = 7.5 appears
to be better.

At the harmonic frequency (St =0.413), we can observe the same trends in figure 25
(we stop calculating the amplitudes beyond x/h ≈ 5.6 due to the aforementioned
difficulty in the spectral method). Here, we also observe a sharp trough in the
asymmetric profiles as the disturbances start saturating. In fact, the comparison
between the eigenfunction and the stream function at x/h = 5.0 exhibits discrepancy
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 û
(y

 =
 0

)

x/h

(a)

10–4

10–3

10–2

|a
m

|, 
|b

m
| a

nd
 v̂

(y
 =

 0
)

(b)

10–4

10–3

10–2

1 2 3 4 5 6 7 8

x/h
1 2 3 4 5 6 7 8

Figure 21. Streamwise evolution of the eigenfunctions and the Fourier-transformed velocity
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in figure 26(b). They rather agree better upstream (x/h = 2.5) in figure 26(a). As
the frequency increases, the growth rate of instability waves peaks more upstream.
This explains the better agreement upstream at the harmonic and downstream at the
subharmonic.

Finally, we attempt to reconstruct an instantaneous vorticity field using bi-
orthogonal decomposition. By extracting amplitudes of eigenfunctions near the peak
frequency with an half-octave interval (i.e. St = 0.103, 0.146, 0.206 and 0.290), we
compute the Fourier-transformed velocity field at each frequency and superpose
them together with the mean velocity field. Figure 27 compares the real part of
the superposed vorticity field with the instantaneous one at t = 109.0, which is the
centre during the two periods of the sampling frequency. Because the sampling period
is relatively short even at St = 0.103, the real part of the reconstructed vorticity
field captures the instantaneous field, which yet includes disturbances other than
specified instability waves. Both magnitude and phase of the vorticity field agree well
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components along the centreline at St = 0.103 for two periods (Re = 1000). (a) Symmetric
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in most of the extent, but the agreement deteriorates with downstream distance. In
particular, the eigenfunction at St = 0.290 exhibits noticeable discrepancy with the
original Fourier-transformed stream function from the hybrid simulation (not shown).
To accurately extract instability waves over a range of frequencies, we may need to
decompose the velocity field into the mean flow, large-scale coherent structures and
small-scale disturbances (Reynolds & Hussain 1972), which requires a closer model
for the Reynolds stress. Nonetheless, the overall agreement in this test demonstrates
that the hybrid simulation is capable of analysing instantaneous unsteady velocity
fields quantitatively.

7. Conclusions
We have introduced hybrid unsteady-flow simulations combining PTV and DNS

to investigate planar-jet flows at low Reynolds numbers (Re = 500–4000) and
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Figure 27. Comparison of the vorticity fields (Re = 1000 at t = 109.0). (a) Reconstruction by
superposition of the eigenfunctions calculated with bi-orthogonal decomposition (St = 0.103,
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at the corresponding time. Contour levels and colour patterns are the same as figure 14.
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demonstrated its capabilities by analysing the Kelvin–Helmholtz instability waves
using bi-orthogonal decomposition. We have conducted time-resolved PTV in a water
tunnel and acquired unsteady jet flows on a laser sheet. By synchronizing a multiple of
the computational time step, N	tDNS, with the frame rate of the PTV system, 	tPTV,
we keep supplying the PTV velocity field to the two-dimensional DNS solver in the
course of time. To be precise, we recast the PTV velocity field in a least squares sense
to satisfy the equation of continuity and linearly combine it with the velocity field
updated with the DNS at every N time steps. The weight between the PTV and DNS
velocity fields is determined so that the flow field is gradually converged to that of
the PTV. As a result, a series of unsteady velocity fields that temporally and spatially
satisfy the governing equations can be obtained with the resolution comparable to
the DNS but the noise level much lower than that of the original PTV velocity fields.

The key parameter in the hybrid algorithm is the weight between the PTV and DNS
velocity fields. We can suppress the measurement-noise level by reducing the weight on
the PTV velocity field, but it must be greater than the threshold value associated with
the amplification rate of the entire numerical system. We have estimated the necessary
weight by computing the convergence rate of the hybrid velocity field and deduced
that it is determined by the amplification rate of the initial velocity field given by
the DNS. On the other hand, the maximum growth rates of temporal eigenfunctions
calculated with the locally-parallel-flow assumption are estimated to be higher than
the amplification rate of the initial velocity field. The actual disturbances are spatially
developed in a spreading jet when the hybrid algorithm is activated; accordingly, their
effective growth rates are likely smaller than those of the temporal eigenfunctions.
The necessary weight is also found to be increased with increasing Reynolds number.
This may be caused by the spanwise motion and the measurement-noise level rather
than the viscous effect of the Kelvin–Helmholtz instability.

To demonstrate one of the capabilities of the hybrid simulation, namely the spatial
and temporal filtering, we have analysed the Kelvin–Helmholtz instability based
on bi-orthogonal decomposition. Because this approach requires high-order spatial
derivatives, it is challenging to apply it for time-resolved velocity data contaminated
with measurement noise. Assuming the mean flow to be locally parallel and
transversely sheared, symmetric and asymmetric eigenfunctions from linear stability
analysis have been extracted near the most unstable frequency, St ≈ 0.1–0.4. The inner
product of a spatial problem for a non-self-adjoint system has been used to determine
the amplitude of instability waves at each downstream station, and the evolutions of
both symmetric and asymmetric modes have been compared with those given by the
least squares minimization as well as Fourier-transformed velocity components along
the centreline. In addition, a vorticity field has been reconstructed from superposition
of these extracted eigenfunctions at several frequencies, and the phase and magnitude
of the vorticity field have been compared with the original hybrid velocity field.
Through these tests, the resolution and the noise level of the hybrid velocity fields
are shown to be acceptable for quantitative analysis of unsteady velocity fields, even
in an instantaneous sense.

The analysis based on bi-orthogonal decomposition has suggested that
eigenfunctions from linear stability analysis represent local velocity fluctuations well
in the regions in which the spatial growth rate is relatively high. Namely, sectional
stream functions extracted from the hybrid simulation agree with the eigenfunctions,
and the agreement is better downstream at the low frequency and upstream at
the high frequency. Such a trend is consistent with the fact that instability waves
saturate more upstream with increasing frequency. On the other hand, the streamwise
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growth of instability waves extracted with Fourier transform for a short period
does not necessarily follow the growth rate of the spatial eigenfunction. Correlated
length scales of disturbances are limited in the streamwise extent during a short
time period. To acquire good agreement between velocity measurement and linear
stability analysis for the streamwise evolution, decomposition of mean flow, large-scale
coherent modes and small-scale fluctuations may be required, and many ensembles
are probably necessary.

We would like to thank Dr J. Huang and Mr M. Koukawa for technical supports
of the experiment as well as Mr Y. Kato and Mr K. Yamada for designing the jet
nozzle.

Appendix A. Galerkin method using Jacobi polynomials
As mentioned in § 2.3, the Orr–Sommerfeld equation is solved using the Galerkin

method with the Jacobi polynomials of (α, β) = (1, 1) (Spalart et al. 1991). The
following recursion relation is used to generate a series of polynomials with less
computational cost:

P
(1,1)
0 (η) = 1, P

(1,1)
1 (η) = 2x and

4n2(n + 2)P (1,1)
n (η) = 2n(2n + 1)(2n + 2)ηP

(1,1)
n−1 (η) − 2n2(2n + 2)P (1,1)

n−2 (η)

for n � 2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 1)

With a mapping of η ≡ tanh(y/y0), higher-order Jacobi polynomials are highly
oscillatory in the vicinity of the origin and exponentially decaying towards y → ±∞
so that they satisfy the homogeneous boundary conditions (2.2).

According to the orthogonality of the Jacobi Polynomials, we normalize them as

P̃n(y) ≡ (1 − η(y)2)P (1,1)
n (η(y))√

8y0(n + 1)/(n + 2)(2n + 3)
. (A 2)

The orthogonality can then be simplified as∫ ∞

−∞
P̃m (η(y)) P̃n (η(y)) dy = δmn. (A 3)

Likewise, the relationship for differentiation can be expressed as

d

dy
P̃0(y) = − 1

y0

g(0)g(1)P̃n(y) for n = 0, (A 4a)

d

dy
P̃n(y) = − 1

y0

g(n)
[
g(n + 1)P̃n+1(y) − g(n − 1)P̃n−1(y)

]
for 1 � n � N, (A 4b)

where

g(n) ≡

√
(n + 1)(n + 2)

(2n + 3)
. (A 5)

Thus, the N × N derivative matrix is generated using (A 4a,b) neglecting the orders
higher than n > N , and (2.7) is integrated in −∞ < y < ∞ to rewrite it as a
matrix equation for the coefficients, cn. Subsequently, an eigenvalue problem of an
N × N matrix is computationally solved. For a spatial problem, (2.9) is similarly
solved.
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Figure 28. Growth of velocity fluctuations initiated with the temporal surrogate
eigenfunctions. (a) Symmetric mode. (b) Asymmetric mode. Wavenumbers are α = 2.5, 3.0, 2.0
and 1.5 from the top in both figures. Dotted lines denote the DNS results, and solid lines the
fitted slopes.

The accuracy of the spectral method is evaluated based on an analytic velocity
profile of U (y) = 1/ cosh(2y) using a larger number of polynomials (N = 256) as
well as a shooting method applied to an inviscid limit. The error in the most
unstable eigenvalue is estimated to be less than 0.01 % in |	ω| for a temporal
problem and 0.1 % in |	α| for a spatial problem. The standard deviation of the
corresponding eigenfunctions is within 0.05 % relative to the peak of |ψ | for both
problems. Transverse derivatives of eigenfunctions and the mean-velocity profiles are
also computed using a spectral method. The accuracy of bi-orthogonal decomposition
is then evaluated using symmetric and asymmetric eigenfunctions. The inner product
(2.5b) between these orthogonal modes is calculated to be less than 0.2 % relative to
that of the same modes.

Appendix B. Estimation of temporal growth rates using surrogate
eigenfunctions

To construct a two-dimensional eigenfunction for a temporal problem using (2.12),
real α must be iteratively calculated until a unique growth rate, i.e. an imaginary part
of ω, is found in space. But, in practice the real part of the phase velocity, Re[ω/α],
is nearly constant in the streamwise extent of our interest. For example, for α = 2.5,
which is close to the most unstable wavenumber, the real part of ω varies as little
as 13 % through 0 � x/h � 10. Therefore, we integrate (2.12) with a constant α to
construct a surrogate global eigenfunction for a temporal problem. Such a solution is
sufficient to assess the maximum amplification rate of the entire DNS system for this
study.

We impose such a surrogate eigenfunction as an initial condition on the top
of the mean-velocity field and perform the DNS. By taking the root-mean-square
velocity fluctuations inside the patch function, i.e. (0, 10h) × (−3h, 3h), we can infer
the temporal growth rate of the imposed mode (see figure 28). At Re = 1000, both
symmetric and asymmetric eigenfunctions with several wavenumbers near the most
unstable mode (α = 1.5, 2.0, 2.5 and 3.0) are examined with the initial magnitude
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Case Re Grid points (Nx × Ny) Standard deviations of δu/δv/δp at (8h, 0)

B (DNS) 1000 450 × 300/800 × 540 0.018ujet/0.021ujet/0.006ρu2
jet

C (DNS) 2000 600 × 400/1000 × 640 0.016ujet/0.022ujet/0.008ρu2
jet

C (DNS) 2000 450 × 300/600 × 400 0.066ujet/0.049ujet/0.033ρu2
jet

C (Hybrid) 2000 450 × 300/600 × 400 0.004ujet/0.004ujet/0.010ρu2
jet

D (Hybrid) 4000 450 × 300/600 × 400 0.003ujet/0.003ujet/0.018ρu2
jet

C (DNS/long) 2000 600 × 400/720 × 400 (long) 0.014ujet/0.019ujet/0.008ρu2
jet

Table 3. Summary of the grid-dependence study and the exit-boundary test. The numbers of
grid points compared are listed in the third column, and the standard deviations of streamwise
and transverse velocities as well as pressure between them are listed in the fourth column.
Statistics are taken during approximately 50h/ujet after the first pair of vortices leaves the
domain of interest.

of |u′|max � 0.01ujet . By fitting slopes in logarithmic plots, the largest growth rate
is found to be Im[ω]max ≈ 0.31 and 0.34 for the symmetric and asymmetric modes,
respectively, with both α = 2.5. This wavenumber is close to the local peak of the
hybrid wavenumber spectrum in figure 11(b).

Appendix C. Evaluation of the grid resolution and the exit-boundary condition
First, grid resolution sufficient for the original DNS is inspected. At Re = 1000

and 2000, two sets of mesh are tested by running the same condition with the same
white-noise inflow forcing of approximately 0.5 % velocity fluctuations. The standard
deviations in streamwise and transverse velocities as well as pressure at a sample
point, (x/h, y/h) = (8, 0), are then evaluated by comparing the two grids at each
Reynolds number, and the results are summarized in the first two rows of table 3.
The velocity deviations are found to be approximately 2 % and the pressure deviations
to be within 1 % for both cases. The grid resolution for the Re = 500 case is set to
be the same as that for Re = 1000; thereby, the resolution test being omitted at Re =
500.

To further reduce the grid resolution at Re = 2000 for the hybrid simulation, next
we run both DNS and hybrid simulation with two different grids, 600 × 400 and
450 × 300, and compare the standard deviations at the sample point in the third
and fourth rows of table 3. The results not only demonstrate the insensitivity to the
grid resolution in the hybrid simulation but also show that the deviations due to this
grid reduction in the hybrid simulation are comparable with or smaller than those
associated with the grid resolution in the DNS, mentioned above (i.e. the second
row). This justifies quantitative analysis using the 450 × 300 mesh at Re = 2000 in the
hybrid simulation. Likewise, because certifying the resolution at Re = 4000 based on
the DNS is computationally demanding, we similarly evaluate the standard deviations
only based on the hybrid simulation and find them to be equally small, as listed in
the fifth row of table 3. Thus, we analyse all the hybrid velocity fields solved with
450 × 300 in this study.

In addition, a test run at Re =2000 for the evaluation of the exit-boundary condition
is listed in the last row, where the domains of [0, 30h] × [−10h, 10h] and [0, 45h] ×
[−10h, 10h] are compared. The deviations are on the same order of the grid-resolution
test for the DNS at Re = 2000.
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